已知,如图,在正方形ABCD中,点E、F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF的中点. 求证:(1)CE=CF;(2)DG垂直平分AC.
题目
已知,如图,在正方形ABCD中,点E、F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF的中点
.
求证:(1)CE=CF;(2)DG垂直平分AC.
答案
(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC∴∠ECB=∠FCD,∠BCD=90°,∴∠ECF=90°,∴同理:CG=GE=G...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点