请问:A+B=120度,那么sinA+sinB的最大值是多少
题目
请问:A+B=120度,那么sinA+sinB的最大值是多少
答案
利用和差化积公式
sinA+sinB
=2sin[(A+B)/2]*cos[(A-B)/2]
=2sin60°cos[(A-B)/2]
=√3cos[(A-B)/2]
因为余弦函数的值域是【-1,1】
所以 sinA+sinB的最大值是√3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点