已知A.B为抛物线x2=2py(p>0)上两点,直线AB过焦点F,A,B在准线上的射影分别为C,D,则存在实数 λ 使得向量AD= λ 向量AO

已知A.B为抛物线x2=2py(p>0)上两点,直线AB过焦点F,A,B在准线上的射影分别为C,D,则存在实数 λ 使得向量AD= λ 向量AO

题目
已知A.B为抛物线x2=2py(p>0)上两点,直线AB过焦点F,A,B在准线上的射影分别为C,D,则存在实数 λ 使得向量AD= λ 向量AO
答案
已知A.B为抛物线x²=2py(p>0)上两点,直线AB过焦点F,A,B在准线上的射影分别为C,D,则存在实数 λ 使得向量AD= λ 向量AO ,试予以证明.
证明:焦点F(0,p/2);准线:y=-p/2.
这是要证明A、O、D三点共线.
设过焦点的直线方程为y=kx+p/2;代入抛物线方程得x²-2p(kx+p/2)=x²-2kpx-p²=0
设A(x₁,y₁);B(x₂,y₂ );则x₁+x₂=2kp;x₁x₂=-p²;(设x₁>0>x₂);故x₂=-p²/x₁;
已知O(0,0),D(x₂,-p/2);
于是AO所在直线的斜率KOA=y₁/x₁=(x²₁/2p)/x₁=x₁/2p;
OD所在直线的斜率KOD=-(P/2)/x₂=-P/2x₂=-P/(-2P²/x₁)=x₁/2P;
∴KOA=KOD,且OA与OD有一个公共点O,故A、O、D三点在一条直线上,故存在实数λ,使
得等式AD=λAO成立.故证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.