过点Q(1,0)的直线l与中心在原点,焦点在x轴上且离心率为根号2/2的椭圆C相交于A,B两点,直线y=1/2x过线段AB的中点,椭圆C上存在一点与右焦点F关于l对称,求直线l和椭圆C的方程
题目
过点Q(1,0)的直线l与中心在原点,焦点在x轴上且离心率为根号2/2的椭圆C相交于A,B两点,直线y=1/2x过线段AB的中点,椭圆C上存在一点与右焦点F关于l对称,求直线l和椭圆C的方程
答案
设过Q(1,0)的直线L为:y=k(x-1)=kx-k
∵椭圆C的焦点在x轴上,∴可设其标准方程为:x^/a^ + y^/b^=1
另外,设其右焦点为(c,0),且a>b>0,c>0,根据椭圆性质有:
a^-c^=b^ ①
又由于椭圆离心率为e=√2/2
∴c/a=√2/2 ②
由①,②可得到:
b=c,a=√2c
∴椭圆方程可化为:x^/2c^ + y^/c^=1
设椭圆C与直线L的两个交点为A(x1,y1),B(x2,y2),根据中点坐标公式,可得AB中点M的坐标为((x1+x2)/2,(y2+y2)/2)
联立椭圆C与直线L的方程,消去y,可得到关于x的一元二次方程:
(2k^+1)x^-4k^x+(2k^-2c^)=0
由此可得:
x1+x2=4k^/(2k^+1) ③
将P(x1,y1),Q(x2,y2)代入直线L的方程可得:
y1=kx1-k
y2=kx2-k
y1+y2=k(x1+x2)-2k
将③代入,得:
y1+y2=-2k/(2k^+1) ④
分别将③,④代入已设的PQ中点M的坐标,可得到:
M(2k^/(2k^+1),-k/(2k^+1))
∵M在直线y=x/2上
∴ k/(2k^+1)=(1/2)*(2k^)/(2k^+1)
k=0或k=-1
若k=0,则直线L的方程为y=0,即x轴,必过与椭圆C的右焦点F(c,0),不符合题目中“椭圆C上存在与F关于L对称的点”的条件,故k=0舍去;
由此可得到k=-1
于是,直线L的方程就为:y=-x+1
设椭圆C上关于L与F点对称的点为D(x3,y3)
根据对称的定义可知:线段DF被直线L垂直平分,则有:
DF⊥L
kDF=-1/kL=-1/(-1)=1
结合F(c,0),可得到直线DF的方程为:
y=x-c
联立DF与L的方程y=-x+1,可得出其交点的坐标N为:
N((c+1)/2 ,(1-c)/2)
由刚才的结论:DF被L垂直平分,可知N为DF的中点,于是,联合N,F的坐标,根据中点坐标公式,可以得出D点坐标为:
D(2*(c+1)/2 - c ,2*(1-c)/2 - 0)
即D(1 ,1-c)
而D为椭圆C上的点,故将其代入椭圆C所设的标准方程:x^/2c^ + y^/c^=1:
1 / 2c^ + (1-c)^/c^ =1
c=3/4
带回到原所设方程,可得到C的方程为:
x^/(9/8) + y^/(9/16)=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 一块长方体木块,长20cm,宽12cm.高10cm,据成两块相同的长方体,表面积最大可增加多少平方厘米?
- 点M,N在线段AB上,且MB=6cm,NB=9cm,且N是AM的中点,则AB= cm,AN= cm
- 氯酸根 ClO3- 硝酸根 NO3- 碳酸根CO32- 铵根 NH4+ 它们的离子符号是怎么确定的?
- 朱自清的 《春》 盼望着,盼望着,东风来了,春天的脚步近了.一切都像刚睡醒的样子,欣欣然张开了眼.
- who ( )went there with you?i went there along.A.other B.else C.others Danother为什么选B不选捏?
- “第一集”英语怎么说
- 当x+y=8,x-y=2时,求代数式x的平方-xy+y的平方
- 七年级数学下册二元一次方程的复习题
- the horizon reference
- 神态描写的作用是什么
热门考点