如图,MN是⊙O的直径,MN=2,∠AMN=30°,B点是弧AN的中点,P是直径MN上的动点,则PA+PB的最小值为(  ) A.22 B.2 C.1 D.2

如图,MN是⊙O的直径,MN=2,∠AMN=30°,B点是弧AN的中点,P是直径MN上的动点,则PA+PB的最小值为(  ) A.22 B.2 C.1 D.2

题目
如图,MN是⊙O的直径,MN=2,∠AMN=30°,B点是弧AN的中点,P是直径MN上的动点,则PA+PB的最小值为(  )
A. 2
2

B.
2

C. 1
D. 2
答案
作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.
此时PA+PB最小,且等于AC的长.
连接OA,OC,根据题意得弧AN的度数是60°,
则弧BN的度数是30°,
根据垂径定理得弧CN的度数是30°,
则∠AOC=90°,
又∵OA=OC=1,
则AC=
2

故选B.
首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.

轴对称-最短路线问题;勾股定理;垂径定理.

此题主要考查了轴对称最短路径问题,找到A的对称点,确定点P的位置,利用垂径定理是关键步骤.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.