设向量a=(1,cos2α),b=(2,1),c=(4sinα,1),

设向量a=(1,cos2α),b=(2,1),c=(4sinα,1),

题目
设向量a=(1,cos2α),b=(2,1),c=(4sinα,1),
d=(1/2sinα,1)其中α属于(0.π/4)
求向量a*b-c*d的取值范围
若函数f(x)=绝对值(x-1),比较f(向量ab)与f(向量cd)的大小
答案
a·b=(1,cos(2α))·(2,1)=2+cos(2α)
c·d=(4sinα,1)·(sinα/2,1)=2sinα^2+1
1
a·b-c·d=2+cos(2α)-2sinα^2-1=1+cos(2α)-2sinα^2
=cos(2α)+cos(2α)=2cos(2α)
α∈(0,π/4),即:2α∈(0,π/2)
故:2cos(2α)∈(0,2),即:a·b-c·d∈(0,2)
2
f(a·b)=|2+cos(2α)-1|=2|cosα^2|=2cosα^2
f(c·d)=|2sinα^2+1-1|=2|sinα^2|=2sinα^2
α∈(0,π/4),0故:cosα^2>sinα^2
即:f(a·b)>f(c·d)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.