已知(sin2a-2cos^a+2)/(1+tana)=k,其中π/4小于a小于π/2,用k表示

已知(sin2a-2cos^a+2)/(1+tana)=k,其中π/4小于a小于π/2,用k表示

题目
已知(sin2a-2cos^a+2)/(1+tana)=k,其中π/4小于a小于π/2,用k表示
osa-sina.
答案
k=(sin2a-2cosa^2+2)/(1+tana)
=(2sin^2a+sin2a)/(1+tana)
=[2(sina)^2+2sinacosa]/(1+tana)
=[2sina(sina+cosa)]/[1+(sina/cosa)]
=[2sina(sina+cosa)]/[(cosa+sina)/cosa)]
==[2sina(sina+cosa)]*cosa/(sina+cosa)
=2sinacosa
因为TT/40
所以:
(sina-cosa)^2=(sina)^2-2sinacosa+(cosa)^2=1-2sinacosa=1-k
有sina-cosa>0
及cosa-sina=-根号(1-k)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.