设数列{an}的前n项和为Sn,数列{bn}满足:bn=nan,且数列{bn}的前n项和为(n-1)Sn+2n
题目
设数列{an}的前n项和为Sn,数列{bn}满足:bn=nan,且数列{bn}的前n项和为(n-1)Sn+2n
(1)求证:数列{Sn+2}是等比数列:
(2)抽去数列{an}中的第1项,第4项,第7项,...第3n-2项...余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:12/5 < Tn+1/Tn ≤11/3
答案
(1)bn=(n-1)Sn+2n-(n-2)S(n-1)-2(n-1)=(n-1)an+S(n-1)+2bn=nanan=S(n-1)+2Sn=2S(n-1)+2Sn+2=2(S(n-1)+2)得证(2)b1=a1=(1-1)*S1+2*1a1=2Sn=2^(n+1)-2an=2^n然后使用放缩法即可……
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点