在数列﹛an﹜中,a1=1,a(n+1)=(1+1÷n)an+[(n+1)÷2的n次方],设bn=an÷n,求bn的通项公式
题目
在数列﹛an﹜中,a1=1,a(n+1)=(1+1÷n)an+[(n+1)÷2的n次方],设bn=an÷n,求bn的通项公式
答案
a(n+1)=(n+1)/n*an+(n+1)/2^n邻边除以n+1a(n+1)/(n+1)=an/n+1/2^n即b(n+1)-bn=1/2^n所以bn-b(n-1)=1/2^(n-1)……b2-b1=1/2相加bn-b1=1/2*[1-1/2^(n-1)]/(1-1/2)=1-1/2^(n-1)b1=a1/1=1所以bn=2-1/2^(n-1)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点