解方程组(xy+x+y+1)/(x+y+2)=2
题目
解方程组(xy+x+y+1)/(x+y+2)=2
(xz+x+z+1)/(x+z+2)=3
(y+1)(z+1)/y+z+2=4
我希望能是具体步骤``谢谢`
答案
(xy+x+y+1)/(x+y+2)=2 即(x+y+2)/(xy+x+y+1)=[(x+1)+(y+1)]/(x+1)(y+1)
=1/(x+1)+1/(y+1)=1/2
同理:1/(x+1)+1/(z+1)=1/3 1/(y+1)+1/(z+1)=1/4
所以:三式一加:2[1/(x+1)+1/(y+1))+1/(z+1)]=1/2+1/3+1/4=13/12
1/(x+1)+1/(y+1)+1/(z+1)=13/24
所以1/(z+1)=13/24-1/2=1/24,z=23
1/(y+1)=13/24-1/3=5/24,y=24/5-1=19/5
1/(x+1)=13/24-1/4=7/24,x=24/7-1=17/7
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点