过抛物线y=1/4x²的焦点作倾斜角为a的直线l与抛物线交于A,B两点,且|AB|=8,求倾斜角a

过抛物线y=1/4x²的焦点作倾斜角为a的直线l与抛物线交于A,B两点,且|AB|=8,求倾斜角a

题目
过抛物线y=1/4x²的焦点作倾斜角为a的直线l与抛物线交于A,B两点,且|AB|=8,求倾斜角a
不要怀疑题目有问题,答案详细,最好画图的
答案
答:抛物线y=x²/4,x²=4y,p=2抛物线开口向上,对称轴x=0,焦点(0,1),准线y=-1直线L为y-1=x*tana联立抛物线方程得:y=1+x tana=x²/4x²-4x tana-4=0根据韦达定理有:x1+x2=4tanax1*x2=-4|AB|=8,|AB...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.