用换元法计算不定积分∫x sin[(x^2)+4] dx

用换元法计算不定积分∫x sin[(x^2)+4] dx

题目
用换元法计算不定积分∫x sin[(x^2)+4] dx
答案
令x^2+4=t,则d(x^2+4)=dt,即2xdx=dt
∴∫x sin[(x^2)+4] dx
=∫sin[(x^2)+4]xdx
=(1/2)×∫sin[(x^2)+4]×2xdx
=(1/2)×∫sintdt
=-(1/2)cost+C
=-(1/2)cos[(x^2)+4]+C(其中C为任意常数)
或:直接凑微分得
∫xsin[(x^2)+4] dx
=(1/2)×∫sin[(x^2)+4]d(x^2)
=(1/2)×∫sin[(x^2)+4]d[(x^2)+4]
=-(1/2)cos[(x^2)+4]+C(其中C为任意常数)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.