已知f(x)=ax-1+b倍的根号下1-x^2,其中a属于{0,1},b属于{1,2},则使得f(x)大于0在x属于【-1,0】上有解的概率为多少?

已知f(x)=ax-1+b倍的根号下1-x^2,其中a属于{0,1},b属于{1,2},则使得f(x)大于0在x属于【-1,0】上有解的概率为多少?

题目
已知f(x)=ax-1+b倍的根号下1-x^2,其中a属于{0,1},b属于{1,2},则使得f(x)大于0在x属于【-1,0】上有解的概率为多少?
答案
由x的取值范围可得到x-1大于等于-2 小于等于-1,1-x的平方大于等于0小于等于1 ,根据题意分为4种情况(1)a=0 b=1 (2)a=1 b=1 这两种情况函数值恒小于0 无解 (3)a =0 b=2 (4)a=1 b=2 这两种情况有解,所以概率为1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.