已知f(x)=loga[(1-mx)/(x-1)]为奇函数,(a>0,a≠1),(1)求实数m的值
题目
已知f(x)=loga[(1-mx)/(x-1)]为奇函数,(a>0,a≠1),(1)求实数m的值
(2)根据(1)的结果,判断f(x) 在(1,+∞)上的单调性,并加以证明.
答案
(1)由奇函数
则f(-x)=-f(x)
则f(-x)
=loga[(1+mx)/-x-1]
=-f(x)
=loga[(x-1)/(1-mx)]
1-m^2x^2=1-x^2
(1-m^2)x^2=0
m=±1.
当m=1时,真数=-10,且是减函数.
则loga t在R+上
当0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点