曲线{x=3t^2/(1+t^2) y=(5-t^2)/(1+t^2) (t为参数)的普通方程是
题目
曲线{x=3t^2/(1+t^2) y=(5-t^2)/(1+t^2) (t为参数)的普通方程是
答案
x=3t^2/(1+t^2)
x(1+t^2)=3t^2
x+xt^2-3t^2=0
x+t^2(x-3)=0
t^2(x-3)=-x
t^2=-x/(x-3)
y=(5-t^2)/(1+t^2)
y(1+t^2)=5-t^2
y+yt^2=5-t^2
yt^2+t^2=5-y
t^2(y+1)=5-y
t^2=(5-y)/(y+1)
(5-y)/(y+1)=-x/(x-3)
-xy-x=(5-y)(x-3)
-xy-x=5x-15-xy+3y
-x=5x-15+3y
6x+3y-15=0
2x+y-5=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点