在两位数10,11,…,98,99中,将每个被7除余2的数的个位与十位之间添加一个小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少?
题目
在两位数10,11,…,98,99中,将每个被7除余2的数的个位与十位之间添加一个小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少?
答案
10到99的和是:(10+99)÷2×90=4905;被7除余2的两位数有:7×2+2=16,7×3+2=23,7×4+2=30,…7×13+2=93,共12个数,这数中要求添加小数点后,都变为原数的110;那么减少部分的和是:(16+23+30+…+93)×(1-1...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点