设数列{xn}各项为正,且满足x1²+x2²+x3²+……+xn²=2n²+2n

设数列{xn}各项为正,且满足x1²+x2²+x3²+……+xn²=2n²+2n

题目
设数列{xn}各项为正,且满足x1²+x2²+x3²+……+xn²=2n²+2n
我求出xn=2√n,如何证明x1x2+x2x3+x3x4……+xnx(n+1)
答案
(2 )∵
1xn+xn+1
=
12 (n+n+1)
=
12
(
n+1

n
)

1x1+x 2
+
1x2+x3
+…+
1xn+xn+1
=
12
(
n+1

1
)=3
∴n=48
(3)xnxn+1=2
n
2
n+1
=4
nn+1
<4
n+(n+1)2
=4n+2
∴x1x2+x2x3+…xnxn+1<(4×1+2)+(4×2+2)+…(4n+2)=
6+(4n+2)2
n=2[(n+1)2-1].
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.