在△ABC中,∠BAC:∠ABC=7:6,∠ABC比∠C大10°,BE、AD是△ABC的高,交点H.求∠DHB的度数.
题目
在△ABC中,∠BAC:∠ABC=7:6,∠ABC比∠C大10°,BE、AD是△ABC的高,交点H.求∠DHB的度数.
答案
设∠BAC=7k,∠ABC=6k,则∠C=6k-10°,
在△ABC中,7k+6k+6k-10°=180°,
解得k=10°,
所以,∠C=6×10°-10°=50°,
∵BE、AD是△ABC的高,
∴∠CBE+∠DHB=90°,∠CBE+∠C=90°,
∴∠DHB=∠C=50°.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点