证明n^3-n在n是〉=2的正整数时永远可以被6整除

证明n^3-n在n是〉=2的正整数时永远可以被6整除

题目
证明n^3-n在n是〉=2的正整数时永远可以被6整除
别用数学归纳法,因为那样我知道该如何做.
如何证明:三个自然数,因此必然有一个可以被3整除?
答案
n^3-n=n(n^2-1)=(n-1)n(n+1)n-1和n当n>=2时是相邻的正整数,所以必有一个是偶数,即至少有一个能被2整除.又n-1,n和n+1当n>=2时是相邻是连续的三个正整数,所以必有一个能被3整除所以(n-1)n(n+1)能被2和3整除2和3互质所...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.