若函数y=x2-4px-2的图象过点(tanα,1),及点(tanβ,1).)
题目
若函数y=x2-4px-2的图象过点(tanα,1),及点(tanβ,1).)
求2cos2αcos2β+psin2(α+β)+2sin2(α-β)的值.
答案
因为1=tan2α-4ptanα-2
1=tan2β-4ptanβ-2
所以tanα,tanβ是x2-4px-3=0的两根
tanα+tanβ=4p
tanαtanβ=-3
原式=2psin(α+β)cos(α+β)+2sin2(α-β)=2+2ptan(α+β)/tan2(α+β)+1=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点