已知函数f(x)=x3+ax2+bx在x=1处有极值为10,则f(2)=

已知函数f(x)=x3+ax2+bx在x=1处有极值为10,则f(2)=

题目
已知函数f(x)=x3+ax2+bx在x=1处有极值为10,则f(2)=
答案
解由f(x)=x3+ax2+bx在x=1处有极值为10
知f(1)=10,f'(1)=0
即1+a+b=10.(1)
又由f'(x)=3x^2+2ax+b
即f'(1)=3+2a+b=0.(2)
由1,2解得a=-12,b=21
即f(x)=x^3-12x^2+21
即f(2)=2^3-12×2^2;+21=-19
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.