L为平面上任意不经过原点的逆时针圆周,试计算封闭曲线积分∫L(xdy-ydx)/(x^2+4y^2

L为平面上任意不经过原点的逆时针圆周,试计算封闭曲线积分∫L(xdy-ydx)/(x^2+4y^2

题目
L为平面上任意不经过原点的逆时针圆周,试计算封闭曲线积分∫L(xdy-ydx)/(x^2+4y^2
答案
1、当原点不在曲线内时,P=-y/(x²+4y²),Q=x/(x²+4y²),P、Q在L内具有一阶连续偏导数计算得:∂P/∂y=∂Q/∂x,由格林公式易得封闭曲线上积分为0,本题结果=02、当原点在曲线内...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.