设函数f(x)=(x^2-1)/[ |x|(x-1) ],则其第一类间断点为0,为什么

设函数f(x)=(x^2-1)/[ |x|(x-1) ],则其第一类间断点为0,为什么

题目
设函数f(x)=(x^2-1)/[ |x|(x-1) ],则其第一类间断点为0,为什么
答案
答案是错的,因为此函数是初等函数,除0,1两点外,函数都连续,表达式为(x+1)/|x|,在点x=1处极限为2,而在0点的极限为无穷大,所以x=1是此函数的第一类可去间断点,x=0是函数的第二类无穷间断点,如果答案如你所说,则函数表达式你一定看错了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.