如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积.
题目
如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2
,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积.
答案
四边形ABCD绕AD旋转一周所成的
几何体,如右图:
S
表面=S
圆台下底面+S
圆台侧面+S
圆锥侧面=
πr
22+π(r
1+r
2)l
2+πr
1l
1=
π×52+π×(2+5)×5+π×2×2=
25π+35π+4π=
60π+4π 旋转后的几何体是圆台除去一个倒放的圆锥,根据题目所给数据,求出圆台的侧面积、圆锥的侧面积、圆台的底面积,即可求出几何体的表面积.
旋转体(圆柱、圆锥、圆台).
本题是基础题,考查旋转体的表面积,转化思想的应用,计算能力的考查,都是为本题设置的障碍,仔细分析旋转体的结构特征,为顺利解题创造依据.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点