解关于x的一元二次不等式x²+ax+1>0(a∈R)

解关于x的一元二次不等式x²+ax+1>0(a∈R)

题目
解关于x的一元二次不等式x²+ax+1>0(a∈R)
当△>0,方程解为x1=[-a-√(a²-4)]/2,x2=[-a+√(a2-4)]/2
当△=0,原不等式的解集为{x∈R▏x≠-a/2}
那么,为什么 当a≤-2或a≥2时,原不等式的解集是 {x▏x<[-a-√(a²-4)]/2,或x>[-a+√(a²-4)]/2
答案
△=a^2-4>0
a^2>4
a<-2或者a>2
△=0
a=-2或者a=2
x^2+ax+1是一个U型的图像
也就是假设两个根x1xx2时函数大于0
所以 当a≤-2或a≥2时,原不等式的解集是 {x▏x<[-a-√(a²-4)]/2,或x>[-a+√(a²-4)]/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.