设二次函数y=ax^2+bx+c中的a,b,c为整数,且f(0),f(1)均为奇数,求证:f(x)=0无整数根
题目
设二次函数y=ax^2+bx+c中的a,b,c为整数,且f(0),f(1)均为奇数,求证:f(x)=0无整数根
一定要用反证法!
答案
先给二次函数y=ax^2+bx+c配方,然后根据已知反推.不难.自己再研究一下.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点