在△ABC中,AB=AC,∠BAC=120°,AB、AC的垂直平分线DE、FG分别交BC于E、G两点,若BC=30,则EG=_.
题目
在△ABC中,AB=AC,∠BAC=120°,AB、AC的垂直平分线DE、FG分别交BC于E、G两点,若BC=30,则EG=______.
答案
∵AB=AC,∠BAC=120°,
∴∠B=∠C=
(180°-120°)=30°,
∵DE、FG分别是AB、AC的垂直平分线,
∴AE=BE,AG=CG,
∴∠B=∠BAE=30°,∠C=∠CAG=30°,
∴∠AEG=∠AGE=30°+30°=60°,
∴△AEG是等边三角形.
∴BE=EG=CG,
∵BC=30,
∴EG=
BC=
×30=10.
故答案为:10.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点