有一线性无关向量组:a1,a2,a3……as(1,2,3…s均为下标),A是m*n矩阵

有一线性无关向量组:a1,a2,a3……as(1,2,3…s均为下标),A是m*n矩阵

题目
有一线性无关向量组:a1,a2,a3……as(1,2,3…s均为下标),A是m*n矩阵
为什么当秩R(A)=n时,Aa1,Aa2…Aas是线性无关的
答案
设k1Aa1+k2Aa2+…ksAas=0(ki为数)
即A(k1a1+k2a2+…ksas)=0
也即n维列向量k1a1+k2a2+…ksas是齐次线性方程AX=0的解,
因为R(A)=n,所以齐次线性方程AX=0只有一组解,即为0解,
所以k1a1+k2a2+…ksas=0,
又因为a1,a2,a3,……as是线性无关,
所以k1=k2=…=ks=0
Aa1,Aa2…Aas是线性无关的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.