如图,已知在凸四边形ABCD中,对角线AC、BD相交于O,且AC⊥BD,OA>OC,OB>OD. 求证:BC+AD>AB+CD.
题目
如图,已知在凸四边形ABCD中,对角线AC、BD相交于O,且AC⊥BD,OA>OC,OB>OD.
求证:BC+AD>AB+CD.
答案
证明:在OA上截取OC′=OC,在OB上截取OD′=OD,
连接C′D′,AD′,BC′,设BC′、AD′交于E(如图),
易证△COD≌△C′OD′(SAS),
所以CD=C′D′,
易证△AOD≌△AOD′,△COB≌△C′OB(SAS),
所以AD=AD′,CB=C′B,
在△C′D′E中,C′E+D′E>C′D′①
在△ABE中,AE+BE>AB②
①+②得AE+D′E+BE+C′E>AB+C′D′,
所以AD′+BC′>AB+CD,
所以AD+BC>AB+CD.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点