证明多项式a0*x^n+a1*x^n-1+a2*x^n-2+.+...an=0当n为奇数时,至少有一实根.(a0!=0)
题目
证明多项式a0*x^n+a1*x^n-1+a2*x^n-2+.+...an=0当n为奇数时,至少有一实根.(a0!=0)
答案
不妨设a0 > 0.
我们证明x为充分大的正实数时,多项式取正值,而x为绝对值充分大的负实数时取负值.
于是存在取零的点,即实根.
实际上,当|x| > |a1/a0|+|a2/a0|+...+|an/a0|+1.
有|a0·x^n| > |a1·x^n|+|a2·x^n|+...+|an·x^n|
> |a1·x^(n-1)|+|a2·x^(n-2)|+...+|an|
≥ |a1·x^(n-1)+a2·x^(n-2)+...+an|.
由a0 > 0,若x > 0,则a0·x^n > 0,有a0·x^n+a1·x^(n-1)+a2·x^(n-2)+...+an > 0.
由a0 > 0,n是奇数,若x < 0,则a0·x^n < 0,有a0·x^n+a1·x^(n-1)+a2·x^(n-2)+...+an < 0.
而a0·x^n+a1·x^(n-1)+a2·x^(n-2)+...+an关于x连续,故存在零点.
另一种方法,由代数基本定理,n次方程有n个复根.
而实系数一元多项式方程虚根成对,但n是奇数,故存在实根.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 英语翻译
- 情态动词NEED的用法
- 我不得不离开你,因为你不属于我的英文翻译
- 终边在y=-[(根号3)/3]x直线上的角的集合为?
- 如何理解马克思主义的创立是人类思想史上的伟大革命变革?
- Is it time for breakfast?
- 设一个直角三角形的两条直角边分别为a、b,斜边上的高位h,斜边为c,则以c+h、a+b、h为三边构成的三角形�
- 最低的积雨云大概海拔多少米?
- 数列1,-a,a^2,-a^3.的前n项和为?等于等比数列求和(1-(-a)^n)/(1+a)?为什么?请写清楚过程
- 在同一平面内,有四条直线a、b、c、d,若a⊥b,b⊥c,c⊥d,则b与d的位置关系是
热门考点