若lim(2n+(an^2-2n+1)/(bn+2))=1 求a/b的值

若lim(2n+(an^2-2n+1)/(bn+2))=1 求a/b的值

题目
若lim(2n+(an^2-2n+1)/(bn+2))=1 求a/b的值
答案
纠正一下:你必须写x趋向无穷大!
可化为:
lim(2bn^2+4n+an^2-2n+1)/(bn+2)=1
lim[(2b+a)n^2+2n+1]/(bn+2)=1
因为lim(2n+(an^2-2n+1)/(bn+2))=1为一常数,
所以可知.分子分母最高阶次相等
则因为分母最高阶次为1.
所以a+2b=0
则可化为
lim(2n+1)/(bn+2))=1
上下除以2
则lim(2+1/n)/(b+2/n)=1
则b=2
所以a=-4
所以a/b=-2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.