设a,b,c为满足a+b+c=1的正实数,证明:a3√1+b-c+b3√1+c-a+c3√1+a-b≤1

设a,b,c为满足a+b+c=1的正实数,证明:a3√1+b-c+b3√1+c-a+c3√1+a-b≤1

题目
设a,b,c为满足a+b+c=1的正实数,证明:a3√1+b-c+b3√1+c-a+c3√1+a-b≤1
设a,b,c为满足a+b+c=1的正实数,证明:a3√(1+b-c)+b3√(1+c-a)+c3√(1+a-b)≤1
3√为三次根号
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.