如图,AD是△ABC的中线,点E在BC的延长线上,CE=AB,∠BAC=∠BCA, 求证:AE=2AD.

如图,AD是△ABC的中线,点E在BC的延长线上,CE=AB,∠BAC=∠BCA, 求证:AE=2AD.

题目
如图,AD是△ABC的中线,点E在BC的延长线上,CE=AB,∠BAC=∠BCA,
求证:AE=2AD.
答案
证明:延长AD至M,使DM=AD,
∵AD是△ABC的中线,
∴DB=CD,
在△ABD和△MDC中
BD=CD
∠ADB=∠MDC
AD=DM

∴△ABD≌△MCD(SAS),
∴MC=AB,∠B=∠MCD,
∵AB=CE,
∴CM=CE,
∵∠BAC=∠BCA,
∴∠B+∠BAC=∠ACB+∠MCD,
即∠ACM=∠ACE,
在△ACE和△ACM中
AC=AC
∠ACE=∠ACM
CM=CE

∴△ACM≌△ACE(SAS).
∴AE=AM,
∵AM=2AD,
∴AE=2AD.
首先延长AD至M,使DM=AD,先证明△ABD≌△MCD,进而得出MC=AB,∠B=∠MCD,即可得出∠ACM=∠ACE,再证明△ACM≌△ACE,即可得出答案.

全等三角形的判定与性质.

此题主要考查了全等三角形的判定与性质,利用倍长中线得出辅助线是解题关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.