lim(x→0)[(1+x^3)^1/3-1]/x^3
题目
lim(x→0)[(1+x^3)^1/3-1]/x^3
答案
注意x^3=1+x^3 -1=[(1+x^3)^1/3 -1] *[(1+x^3)^2/3+(1+x^3)^1/3+1]
所以
lim(x→0)[(1+x^3)^1/3-1]/x^3
=lim(x→0)[(1+x^3)^1/3-1] / [(1+x^3)^1/3 -1] *[(1+x^3)^2/3+(1+x^3)^1/3+1]
=lim(x→0) 1/[(1+x^3)^2/3+(1+x^3)^1/3+1] 代入x=0
=1/(1+1+1)
=1/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点