函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f(x)+94.求证:对所有实数x,f(x+1)=f(x)+1.

函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f(x)+94.求证:对所有实数x,f(x+1)=f(x)+1.

题目
函数f:R→R满足下述条件:对所有实数x,有f(x+19)≤f(x)+19 和 f(x+94)≥f(x)+94.求证:对所有实数x,f(x+1)=f(x)+1.
答案
一楼的反证法有漏洞.按这个证法,可以证明f(x+19·94/n)=f(x)+19·94/n对任意大的自然数n都成立,那么当n→+∞时,岂不是可以证明f(x)有无穷小的正周期,那么f(x)岂不只能是常函数了?
寂寂落定的漏洞在于:事先肯定了f(x+1)与f(x)+1有恒定方向的不等式成立.这可不一定呀.
其实,我们只能证明f(x+1)=f(x)+1,即可得到最小正周期为1.证明如下:
∵f(x+19)≤f(x)+19,∴f(x+19n)≤f(x+19(n-1))+19≤…≤f(x)+19n
由于95=19·n,所以f(x)+95≥f(x+95)=f(x+1+94)≥f(x+1)+94
得f(x+1)≤f(x)+1
同理,由f(x+94)≥f(x)+94得f(x+94m)≥f(x)+94m
取m=18,因94·18=1692=19·89+1,所以f(x)+1692≤f(x+1692)≤f(x+1)+1691
得f(x+1)≥f(x)+1
所以f(x+1)=f(x)+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.