在三角形ABC中,角C=90°,角B=45°,AD平分角BAC且交BC于点D,证明AB=AC+CD

在三角形ABC中,角C=90°,角B=45°,AD平分角BAC且交BC于点D,证明AB=AC+CD

题目
在三角形ABC中,角C=90°,角B=45°,AD平分角BAC且交BC于点D,证明AB=AC+CD
答案
∠CAD是∠1 ∠DAE是∠2
截取AE=AC,连接DE
∵AD平分∠BAC,
∴∠1=∠2.
在△ACD和△AED中, AC=AE,∠1=∠2,AD=AD, ∴△ACD≌△AED(SAS). ∴∠AED=∠C=90,CD=ED,
又∵AC=BC, ∴∠B=45°.
∴∠EDB=∠B=45°.
∴DE=BE,
∴CD=BE.
∵AB=AE+BE,
∴AB=AC+CD.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.