三角形ABC中,∠ABC=2∠C,AD⊥BC,延长AB至点E,使BE=BD,连结ED并延长,交AC于点F,说明AF=FC

三角形ABC中,∠ABC=2∠C,AD⊥BC,延长AB至点E,使BE=BD,连结ED并延长,交AC于点F,说明AF=FC

题目
三角形ABC中,∠ABC=2∠C,AD⊥BC,延长AB至点E,使BE=BD,连结ED并延长,交AC于点F,说明AF=FC
答案
因为BD=BE,所以角ABC=2角BDE=2角FDC=2角C,所以角FDC=角C
所以FD=FC,又因为角DAC+角C=90·,角ADF+角CDF=90·,所以角FDA=角FAD,所以FD=FA,所以FA=FC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.