已知p3+q3=2,用反证法证明:p+q≤2.

已知p3+q3=2,用反证法证明:p+q≤2.

题目
已知p3+q3=2,用反证法证明:p+q≤2.
答案
证明:假设p+q>2,则p>2-q,可得p3>(2-q)3
p3+q3>8-12q+6q2又p3+q3=2,
∴2>8-12q+6q2,即q2-2q+1<0⇒(q-1)2<0,矛盾,
故假设不真,
所以p+q≤2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.