若一RT△斜边长为c,内切圆半径为r,则内切圆面积与三角形面积之比是多少?

若一RT△斜边长为c,内切圆半径为r,则内切圆面积与三角形面积之比是多少?

题目
若一RT△斜边长为c,内切圆半径为r,则内切圆面积与三角形面积之比是多少?
答案
作直角三角形并在其内部作内切圆,过圆心作三边的垂线,
设直角三角形的三边长分别为a,b,c,
利用切线长定理可得内切圆的半径r=(a+b-c)/2,
所以a+b=c+2r,
又因为a^2+b^2=c^2,
所以S三角形=ab/2=[(a+b)^2-(a^2+b^2)]/4=[(c+2r)^2-c^2]/4=(4cr+4r^2)/4=cr+r^2,
所以S圆:S三角形=πr^2:(cr+r^2)=πr:(c+r).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.