求x[n]=cos(π/8*n^2)的周期,n是离散的.这是matlab的结果,周期是8,

求x[n]=cos(π/8*n^2)的周期,n是离散的.这是matlab的结果,周期是8,

题目
求x[n]=cos(π/8*n^2)的周期,n是离散的.这是matlab的结果,周期是8,
>> n=[1:1:100];
>> x=cos(pi/8*(n.^2));
>> plot(n,x,'.')
答案
假设T是cos(π/8*n^2)的最小正周期,也就是说对于任何整数n,
cos(π/8*n^2)=cos(π/8*(n+T)^2)=cos(π/8*(n^2+2nT+T^2))
又因为16是cos(π/8*x)的最小正周期,因此对任何整数n,16必整除2nT+T^2……(1)
当n=0时,可知16整除T^2……(2)
于是由(1)(2)可以推出16必整除2nT,即8整除nT
当n=1时,可知8整除T.
因为T是最小正周期,因此T=8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.