a+b=120度,求y=sin^a+cos^b的最小值

a+b=120度,求y=sin^a+cos^b的最小值

题目
a+b=120度,求y=sin^a+cos^b的最小值
答案
a+b=120度,求y=sina+cosb的最小值
y=sina+cosb= sina+sin(90-b)=2sin((a+90-b)/2)cos((a+b-90)/2)
=2sin((a+90-b)/2)cos((120-90)/2)=2sin((a+90-b)/2)cos15
当(a+90-b)/2=(a-b+90)/2=360K+270度,(K为任意整数),即a-b=720K+450度时,
sin((a+90-b)/2)=-1最小,此时由
由a+b=120度,a-b=720K+450度
解得a=360K+285度,b=-360K-115度
故当a=360K+285度,b=-360K-115度时,y=sina+cosb取最小值-cos15=-(√2+√6)/4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.