证明:a的n次方和b的n次方的最小公倍数等于a和b的最小公倍数的n次方

证明:a的n次方和b的n次方的最小公倍数等于a和b的最小公倍数的n次方

题目
证明:a的n次方和b的n次方的最小公倍数等于a和b的最小公倍数的n次方
如题,
答案
证明:假设a=MN
b=QN (N为a和b的最大公约数)
则;最小公倍数为:MNQ
a^n=M^2N^2
b^2=Q^2N^2
显然:M和Q互质,所以M^2和Q^2互质!
所以a^2和b^2的最小公倍数为:
M^2N^2Q^2=(MNQ)^2
得证!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.