如图,在菱形ABCD中,E,F分别是BC,CD上的点,∠B=∠EAF=60°,∠BAE=20°,求∠CEF的度数.
题目
如图,在菱形ABCD中,E,F分别是BC,CD上的点,∠B=∠EAF=60°,∠BAE=20°,求∠CEF的度数.
答案
如图,连接AC,
在菱形ABCD中,AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,
∵∠BAE+∠CAE=∠BAC=60°,
∠CAF+∠EAC=∠EAF=60°,
∴∠BAE=∠CAF,
∵∠B=∠ACF=60°,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
∴60°+∠CEF=60°+20°,
解得∠CEF=20°.
连接AC,判断出△ABC是等边三角形,根据等边三角形的性质可得AB=AC,然后求出∠BAE=∠CAF,再利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等可得AE=AF,从而判断出△AEF是等边三角形,根据等边三角形的性质可得∠AEF=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理可得∠CEF=∠BAE.
菱形的性质.
本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键,也是本题的难点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 对联!根据韩愈的 马说 的对联!上联:良马有幸遇伯乐.下联:( ) 上联:世上岂无千里马.下联:( )
- 小李四天做完一批零件,第一天和第二天共做了54个,第二天、第三天和第四天共做了90个
- Rt△BMC中,斜边BM=5,它在平面ABC上的射影AB长4,∠MBC=60°,求MC与平面ABC所成角的
- 向量叉积为什么是反交换律
- 火星上如果有生命,它是什么样的?如何生存的?
- 我们可以按照什么将机械运动分为两类
- 已知三角形ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(4,-1),n=(cos^2A/2),且m*n=7/2
- 已知次氯酸钙和氯化钙的混合物中钙元素的质量分数为32%,那么混合物中氧元素的质量分数是多少?(急)
- the nature reserve provides a shelter for wildlife .是什么结构?主谓宾 还是双宾 还是宾补?
- 关于为你打开一扇门的问题