几何问题(轨迹)

几何问题(轨迹)

题目
几何问题(轨迹)
经过坐标原点O的直线与圆C:X²+Y²+2X-4Y-31=0相交于A,B两点,求弦AB中点M的轨迹方程.
答案
设割线方程为:y=kx代人x²+y²-4y+2x+4=0得:(1+k^2)x^2+(2-4k)x+4=0x1+x2=(4k-2)/(1+k^2)所以,弦AB的中点M的横坐标=(x1+x2)/2=(2k-1)/(1+k^2)把k=y/x代人得:x=(2y/x-1)/(1+y^2/x^2)x=x(2y-x)/(x^2+y^2)x^...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.