求证:当n是整数时,(2n+1)^2-1能被8整除

求证:当n是整数时,(2n+1)^2-1能被8整除

题目
求证:当n是整数时,(2n+1)^2-1能被8整除
如题
答案
因为(2n+1)^2-1
=(2n+1+1)(2n+1-1)
=4n(n+1),
又因为n,n+1是两个连续整数,
所以必定能被2整除,
所以4n(n+1)是8的倍数,
即(2n+1)^2-1能被8整除.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.