如图所示,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加一个条件_,可以判定四边形BEDF是菱形.

如图所示,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加一个条件_,可以判定四边形BEDF是菱形.

题目
如图所示,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加一个条件______,可以判定四边形BEDF是菱形.
答案
添加条件BE=BF.
∵四边形ABCD是正方形,
∴AD=AB,∠DAE=∠BAE=45°,
在△ABE和△ADE中
AD=AB
∠DAE=∠BAE
AE=AE

∴△ADE≌△ABE(SAS),
∴ED=EB,
同理:DF=BF,
∵EB=FB,
∴四边形BEDF是菱形.
故答案为:BE=BF.
根据正方形的性质可得AD=AB,∠DAE=∠BAE=45°,再证明△ADE≌△ABE可得ED=EB,同理可得DF=BF,再加上条件EB=FB,可得四边形BEDF是菱形.

菱形的判定;正方形的性质.

此题主要考查了菱形的判定,关键是掌握四边相等的四边形是菱形.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.