连续性随机变量

连续性随机变量

题目
连续性随机变量
试证明边疆性随机变量ε,若在有限区间内取值,则它的数学期望E(ε)不小于这个区间左端点的值和不大于这个区间右端点的值.
试证明连续性随机变量ε,若在有限区间内取值,则它的数学期望E(ε)不小于这个区间左端点的值和不大于这个区间右端点的值。
答案
针对补充问题:
设有限区间为[a,b],连续型随机变量ε的密度函数为f(x),且由密度函数性质得f(x)在[a,b]的积分为1
则E(ε)=∫x*f(x) dx >= ∫af(x)dx=a,积分区间为[a,b]
期望小于等于b同理
#
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.