(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于D,CE⊥AF于E.求证:DE=BD-EC. (2)对于(1)中的条件改为:直线AF在△ABC外,与BC的

(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于D,CE⊥AF于E.求证:DE=BD-EC. (2)对于(1)中的条件改为:直线AF在△ABC外,与BC的

题目
(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于D,CE⊥AF于E.求证:DE=BD-EC.
(2)对于(1)中的条件改为:直线AF在△ABC外,与BC的延长线相交于F,其他条件不变,上述结论仍成立吗?(请画出图形)若不成立,请写出正确的关系式.(不用证明)
答案
(1)∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
又∠ADB=90°,
∴∠ABD+∠BAD=90°,
∴∠ABD=∠CAE,
在△ABD和△ACE中
∠ABD=∠CAE
∠ADB=∠AEC
AB=AC

∴△ABD≌△ACE(AAS),
∴BD=AE,AD=CE,
∴DE=AE-AD=BD-EC;
(2)DE=BD+EC;
(1)先证△ABD和△ACD全等,BD=AE,AD=CE,DE=AE-AD用线段进行等量代换可得结果DE=BD-EC;
(2)画出图根据三角形全等可看出结果为DE=BD+EC.

全等三角形的判定与性质.

本题考查全等三角形的全等和判定关键是证明全等后线段之间进行等量代换.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.