基本不等式解题时,除了求最值,什么时候要求左右一方为定值

基本不等式解题时,除了求最值,什么时候要求左右一方为定值

题目
基本不等式解题时,除了求最值,什么时候要求左右一方为定值
求最值问题,一定要求左右一方为定值,但看如下一题
a,b均为整数,且有ab-a-b=1 求a+b最小值
我的解法
:依题意:ab=a+b+1
a+b≥2√ab=2√(a+b+1)
当且仅当a=b是等号成立
故令t=a+b,则有
t≥2√(t+1)
得t^2≥4t+4
解得t≤2-2√2 或t≥2+2√2
∵t=a+b>0
∴t≥2+2√2
当且仅当a=b=1+√2是等号成立
我去问老师,他也说这样的思路可以,但我忘了问这个问题---在这个解法中a+b不是定值,为什么也可以用到均值不等式?什么时候可以在两端都不是定值的时候用均值不等式?,要求左右一方为定值的本质意义在于哪里?
不要答非所问哦,不要替我想我要问什么哦,仔细看下问题
题目的"整数"改为"正数"打错了
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.