设函数f(x)=e^x+sinx,g(x)=ax,F(x)=f(x)-g(x)
题目
设函数f(x)=e^x+sinx,g(x)=ax,F(x)=f(x)-g(x)
(1)若x=0是F(x)=f(x)-g(x)的极值点,求a的值
(2)当a=1时,设p(x1,f(x1)),Q(x2,g(x2))x1,x2大于零,且PQ//x轴,求PQ两点间的最短距离
(3)若x>=0时,函数y=F(x)的图像恒在y=F(-x)的图像上方,求实数a的取值范围
答案
(1)F ' (x) = e^x + cos x - a ,x=0是极值点,要求F ‘(0)= 0
即 a = 2
(2)依题意,f(x1)= g(x2)= x2,
故 PQ = | x2 - x1| = | f(x1)- x1| = | f(x1)- g(x1)| = | F(x1)|
因为x1>0,而当 x>0 时,F ‘ (x1) = e^x + cos x - 1 > 0,所以F(x) 在 (0,+∞)为增函数.
F(0) = 1,于是 PQ = F(x1) > F(0) = 1
因为要求x1>0,所以PQ无法取得最小值(允许x1取0时,PQ有最小值1)
(3)依题意,当x>=0时,F(x)>=F(-x).令G(x)=F(x) - F(-x),则 G(0) = 0
G ' (x) = e^x + e^(-x) + 2 cos x - 2 a ,题目要求 G'(0)>=0
G '' (x) = e^x - e^(-x) - 2 sin x
G'''(x)= e^x + e^(-x) + 2 cos x
显然,在x>=0时,G'''(x)恒为正,且G''(0)=0,于是G''(x)>=0恒成立
因此,只要G'(0)>=0就有G'(x)>=0恒成立
由G ' (0)>=0 ,解得 a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点